${\bf Skalar produkt}$

MmF

Das Skalarprodukt zweier Vektoren $\vec{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ und $\vec{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$ berechnen wir folgendermaßen:

$$\vec{v}\cdot\vec{w}=\left(\begin{smallmatrix}v_1\\v_2\end{smallmatrix}\right)\cdot\left(\begin{smallmatrix}w_1\\w_2\end{smallmatrix}\right)=v_1\cdot w_1+v_2\cdot w_2$$

Das Ergebnis (Produkt) ist also eine Zahl (Skalar).

Skalarprodukt und Winkel

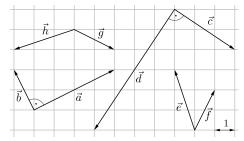
Rechts unten sind 4 Paare von Vektoren dargestellt. Ermittle jeweils das Skalarprodukt der beiden Vektoren.

1)
$$\vec{a} \cdot \vec{b} =$$

$$\mathbf{2)} \ \vec{c} \cdot \vec{d} =$$

3)
$$\vec{e} \cdot \vec{f} =$$

4)
$$\vec{g} \cdot \vec{h} =$$



Zwischen dem Skalarprodukt zweier Vektoren und dem eingeschlossenen Winkel gibt es einen Zusammenhang. Hast du eine Vermutung?

Vektor-Winkel-Formel

Die Vektoren \vec{v} und \vec{w} sind rechts mit gleichem Anfangspunkt eingezeichnet.

Den eingeschlossenen Winkel φ mit $0^{\circ} \leq \varphi \leq 180^{\circ}$ können wir mit der

Vektor-Winkel-Formel berechnen: $\cos(\varphi) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}| \cdot |\vec{w}|}$ mit $\vec{v}, \vec{w} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

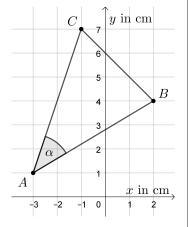


Die Vektor-Winkel-Formel kann man aus dem Cosinussatz herleiten. Mehr dazu findest du auf der letzten Seite.

Vektor-Winkel-Formel

Das Dreieck ABC mit den Eckpunkten $A=(-3\mid 1)\,,\ B=(2\mid 4)$ und $C=(-1\mid 7)$ ist dargestellt.

- 1) Berechne den Winkel α mit der Vektor-Winkel-Formel.
- 2) Berechne den Flächeninhalt F des Dreiecks mit der trigonometrischen Flächenformel.



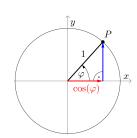
Vorzeichen des Skalarprodukts

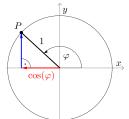
Die Winkelfunktion Cosinus ist am Einheitskreis für alle Winkel $\varphi \in \mathbb{R}$ definiert.

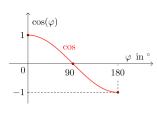
Wir untersuchen das Vorzeichen von $\cos(\varphi)$ für alle Winkel φ mit $0^{\circ} \le \varphi \le 180^{\circ}$.

Trage <, > oder = richtig in die Kästchen ein:

$\varphi = 0^{\circ}$	$\cos(\varphi)$ 1
$0^{\circ} < \varphi < 90^{\circ}$	$\cos(\varphi)$ 0
$\varphi = 90^{\circ}$	$\cos(\varphi)$ 0
$90^{\circ} < \varphi < 180^{\circ}$	$\cos(\varphi)$ 0
$\varphi = 180^{\circ}$	$\cos(\varphi)$ -1





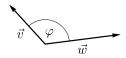


Das Vorzeichen von $\cos(\varphi)$ verrät uns also, ob φ ein spitzer, rechter oder stumpfer Winkel ist.

 $\text{Aus } \cos(\varphi) = \frac{\overrightarrow{v} \cdot \overrightarrow{w}}{|\overrightarrow{v}| \cdot |\overrightarrow{w}|} \text{ und } |\overrightarrow{v}|, |\overrightarrow{w}| > 0 \text{ folgt, dass } \cos(\varphi) \text{ und } \overrightarrow{v} \cdot \overrightarrow{w} \text{ das gleiche Vorzeichen haben.}$

Die Vektoren \overrightarrow{v} und \overrightarrow{w} schließen also genau dann einen ...

- ... rechten Winkel φ ein, wenn $\vec{v} \cdot \vec{w}$ 0 gilt.
- ... spitzen Winkel φ ein, wenn $\vec{v} \cdot \vec{w}$ 0 gilt.
- ... stumpfen Winkel φ ein, wenn $\vec{v} \cdot \vec{w}$ 0 gilt.

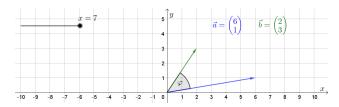


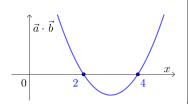
Vorzeichen des Skalarprodukts

Die Richtung der Vektoren $\vec{a}=\left(\begin{smallmatrix}x-1\\1\end{smallmatrix}\right)$ und $\vec{b}=\left(\begin{smallmatrix}x-5\\3\end{smallmatrix}\right)$ hängt von $x\in\mathbb{R}$ ab.

Berechne alle Werte von x so, dass . . .

- 1) \vec{a} und \vec{b} parallel sind.
- 2) \vec{a} und \vec{b} einen rechten Winkel einschließen.
- 3) \vec{a} und \vec{b} einen spitzen Winkel einschließen.
- 4) \vec{a} und \vec{b} einen stumpfen Winkel einschließen.

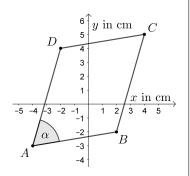




Parallelogramm

Das dargestellte Parallelogramm hat die Eckpunkte $A = (-4 \mid -3), B = (2 \mid -2), C$ und $D = (-2 \mid 4)$.

- 1) Berechne den Eckpunkt C.
- 2) Berechne den eingezeichneten Winkel α .
- 3) Berechne den Flächeninhalt F des Parallelogramms mit der trigonometrischen Flächenformel.



Gleicher Anfangspunkt

Zeichne rechts jeweils einen Winkel α , β , γ bzw. δ ein, der mit der angegebenen Formel berechnet wird.

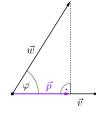
$$\alpha = \arccos\left(\frac{\overrightarrow{CA} \cdot \overrightarrow{CB}}{|\overrightarrow{CA}| \cdot |\overrightarrow{CB}|}\right) \qquad \gamma = \arccos\left(\frac{\overrightarrow{AC} \cdot \overrightarrow{BA}}{|\overrightarrow{AC}| \cdot |\overrightarrow{BA}|}\right)$$

$$\beta = \arccos\left(\frac{\overrightarrow{AB} \cdot \overrightarrow{CB}}{|\overrightarrow{AB}| \cdot |\overrightarrow{CB}|}\right) \qquad \delta = \arccos\left(\frac{\overrightarrow{AC} \cdot \overrightarrow{CB}}{|\overrightarrow{AC}| \cdot |\overrightarrow{CB}|}\right)$$

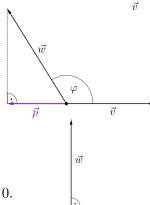
Hinweis: Finde jeweils einen geeigneten Anfangspunkt für die beiden Vektoren.

Neben dem Vorzeichen hat auch der Betrag des Skalarprodukts $\vec{v} \cdot \vec{w}$ eine geometrische Bedeutung. Aus der Vektor-Winkel-Formel folgt: $\vec{v} \cdot \vec{w} = |\vec{v}| \cdot |\vec{w}| \cdot \cos(\varphi)$

i) Rechts schließen die Vektoren \overrightarrow{v} und \overrightarrow{w} einen spitzen Winkel φ ein. Der eingezeichnete Vektor \overrightarrow{p} ist die sogenannte Normalprojektion von \overrightarrow{w} auf \overrightarrow{v} . Im rechtwinkeligen Dreieck gilt: $|\overrightarrow{w}| \cdot \cos(\varphi) = |\overrightarrow{p}|$ In diesem Fall gilt also: $\overrightarrow{v} \cdot \overrightarrow{w} = |\overrightarrow{v}| \cdot |\overrightarrow{p}|$



ii) Rechts schließen die Vektoren \vec{v} und \vec{w} einen stumpfen Winkel φ ein. Im rechtwinkeligen Dreieck gilt: $|\vec{w}| \cdot \cos(180^{\circ} - \varphi) = |\vec{p}|$ Aus dem Einheitskreis folgt, dass $\cos(180^{\circ} - \varphi) = -\cos(\varphi)$ gilt. In diesem Fall gilt also: $\vec{v} \cdot \vec{w} = -|\vec{v}| \cdot |\vec{p}|$

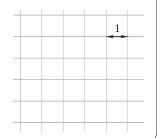


iii) Rechts schließen die Vektoren \vec{v} und \vec{w} einen rechten Winkel ein. In diesem Fall gilt: $\vec{v} \cdot \vec{w} = 0$ Die Normalprojektion \vec{p} ist in diesem Fall der Nullvektor mit der Länge 0.

Normalprojektion

Wir überprüfen $\vec{v} \cdot \vec{w} = |\vec{v}| \cdot |\vec{p}|$ für die Vektoren $\vec{v} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$ und $\vec{w} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$. Stelle dazu die Vektoren \vec{v} und \vec{w} rechts mit gleichem Anfangspunkt dar. Trage dann die richtigen Zahlen in die Kästchen ein:

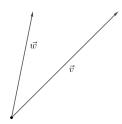
$$|\vec{v}| =$$
 $|\vec{p}| =$ $|\vec{v}| \cdot |\vec{p}| =$



Geometrische Interpretation von $\overrightarrow{v}\cdot\overrightarrow{w}$

Wie kannst du den Vektor \vec{w} rechts unten ändern, ohne dass sich das Skalarprodukt $\vec{v} \cdot \vec{w}$ verändert? Zeichne rechts drei verschiedene Vektoren \vec{a} , \vec{b} und \vec{c} ein, für die gilt:

$$\vec{v} \cdot \vec{w} = \vec{v} \cdot \vec{a} = \vec{v} \cdot \vec{b} = \vec{v} \cdot \vec{c}$$

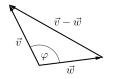


Herleitung der Vektor-Winkel-Formel

Rechts sind die Vektoren \vec{v} und \vec{w} mit gleichem Anfangspunkt eingezeichnet.

Aus $\vec{w} + (\vec{v} - \vec{w}) = \vec{v}$ folgt, dass der Vektor $\vec{v} - \vec{w}$

die Spitze von \overrightarrow{w} mit der Spitze von \overrightarrow{v} verbindet.



Zur Herleitung der Vektor-Winkel-Formel berechnen wir $|\vec{v}-\vec{w}|^2$ auf zwei verschiedene Arten:

1) Berechnung mit der Formel für die Länge eines Vektors:

$$|\overrightarrow{v} - \overrightarrow{w}|^2 = |(v_1 - w_1)|^2 = (v_1 - w_1)^2 + (v_2 - w_2)^2 =$$

$$= v_1^2 - 2 \cdot v_1 \cdot w_1 + w_1^2 + v_2^2 - 2 \cdot v_2 \cdot w_2 + w_2^2 =$$

$$= v_1^2 + v_2^2 + w_1^2 + w_2^2 - 2 \cdot (\underbrace{v_1 \cdot w_1 + v_2 \cdot w_2}_{=\overrightarrow{v} \cdot \overrightarrow{w}})$$

2) Berechnung mit dem Cosinussatz:

$$|\vec{v} - \vec{w}|^2 = |\vec{v}|^2 + |\vec{w}|^2 - 2 \cdot |\vec{v}| \cdot |\vec{w}| \cdot \cos(\varphi) = v_1^2 + v_2^2 + w_1^2 + w_2^2 - 2 \cdot |\vec{v}| \cdot |\vec{w}| \cdot \cos(\varphi)$$

Durch Gleichsetzen erhalten wir die behauptete Vektor-Winkel-Formel:

$$\implies |\vec{v}| \cdot |\vec{w}| \cdot \cos(\varphi) = \vec{v} \cdot \vec{w} \implies \cos(\varphi) = \frac{\vec{v} \cdot \vec{w}}{|\vec{v}| \cdot |\vec{w}|}$$

Wirkt auf einen Körper bei der Bewegung entlang eines Vektors \vec{s} eine konstante Kraft \vec{F} , dann ist das Skalarprodukt

$$W = \vec{F} \cdot \vec{s}$$

die dabei verrichtete **Arbeit** W. Mehr dazu am Arbeitsblatt – Kraftvektoren.

